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Introduction 
 
 In recent years, researchers from many 
scientific fields have been looking to a range of 
biological processes to inform new techniques and 
algorithms for tackling challenging problems in 
engineering and mathematics. As our 
understanding of the details of biological 
phenomena deepens, we are presented with an 
increasing number of naturally occurring, simple, 
yet powerful computational methods that exist in 
nature to perform some useful function. Some of 
these methods have adapted to serve purposes 
outside of their natural habitat. Biologically 
inspired algorithms are beginning to take hold in 
many areas of study but none has benefited as 
significantly as the field of optimization – the 
search across an often complex space for an 
optimal solution, usually a global maximum or 
minimum. In cases where brute force or even 
more conventional optimization techniques fail, 
these new algorithms offer the promise of finding 
true global extrema.  
 
Particle Swarm Optimization 

One interesting algorithm is Particle 
Swarm Optimization (PSO) which attempts to 
model the group movement of insect swarms in 
order to efficiently traverse a solution space 
(Kennedy and Eberhart, 1995),. In biology, if one 
member of a swarm notices a beneficial place or 
entity (such as protection or food), that member 
will move towards it. Consequently, this 
information will be transferred to the rest of the 
group – the other group members will “notice” 
and the mean direction of the swarm will be 
directed towards that item. Eventually, the swarm 
will arrive at the place of interest. Similarly, we 
can imagine such a swarm traveling through a 
virtual solution space in which individuals are 
attracted to extrema defined by some objective 

function that describes the space. If virtual 
particles are given properties similar to their 
natural counterparts, they, too, will ideally 
converge at the optimal solution. 

PSO is a great example of a successful 
transition from the world of biology to the world 
of computation. The algorithm itself is simple; 
each particle is defined by only two properties – 
the current position and current velocity. 
Population-level variables number four to five at 
most. The method is easily reusable for a variety 
of different problems, as the particles may exist in 
a multidimensional space. In addition, because of 
the semistochastic property of swarms, they are 
able to explore a space better than a completely 
deterministic system. At the same time that the 
group is being pulled towards a particular 
minimum or maximum, a random component of 
the particles’ velocities (their search trajectories) 
allows members to explore nearby spaces, 
decreasing the probability of getting stuck in a 
local extrema. 
 
Increasing Interest and Success 

Of course, PSO is not the only successful 
biologically inspired algorithm. Ant Colony 
Optimization, which utilizes the theory of 
communication networks in ant populations, is 
being used to solve complex graph theory 
problems (Dorigo and Gambardella, 1997). 
Neural networks, which are loosely modeled after 
cortical structures in the brain, are also proving to 
be an important addition to many engineering 
fields including regression analysis, classification 
and data processing. Neural networks also enjoy 
wide use in the bioinformatics community where 
they are used for sequence analysis, classification 
and alignment (Blekas, et al., 2005; Rost, 1996). 
In an attempt to take neural networks further and 
to better simulate their natural counterparts, 
several projects around the country, including one 



here at Stanford in the Boahen lab, are aiming to 
create large silicon brains from anywhere between 
several thousand neurons to 1011 neurons, the 
approximate number in a human brain (Boahen 
and Zaghloul, 2006; Izhikevich, 2006). These 
systems, apart from deepening our understanding 
of the brain, can actually be used for computation.  
 One of the most successful biologically 
inspired algorithms, however, is the Genetic 
Algorithm (Goldberg, 1989), which has been used 
with great success to solve large-scale 
optimization problems where other algorithms 
often fail.  

 
 

Genetic Algorithms 
 
 A Genetic Algorithm (GA) is a global 
search heuristic that uses the basics of natural 
selection at a genetic level to evolve a population 
of initially poor solutions towards a problem-
specific optimal solution. The fundamentals of the 
algorithm are familiar to those with even a modest 
biological background – they include 
reproduction (with genetic recombination, i.e. 
crossover), mutation and selection. While many 
non-biological fields have borrowed this powerful 
form of optimization, it has rarely (if ever) been 
brought back to its native environment, i.e. that of 
actual genetic information. The goal of the 
experiments detailed below was to determine if 
and how GAs could successfully used to operate 
on protein sequences. Furthermore, because 
genetic algorithms are commonly plagued by slow 
and often suboptimal convergence, these 
experiments are also an investigation into the 
alleviation of these common problems in the 
space of genetic sequences. 
 
 
The Algorithm 
 Conceptually, the algorithm takes an 
initial, usually randomized population of poor 
solutions to an optimization problem and attempts 
to determine a best solution by utilizing the 
concept of natural selection to evolve the 

population. With each new iteration (or 
generation) of the algorithm, the fitness of the 
solutions (the individuals) in the population is 
calculated. Individuals with higher finesses are 
more likely to “reproduce,” spawning similar 
solutions in the next generation. Like offspring in 
nature, however, these children are not identical to 
their parents. Due both to the recombination of the 
parental genetic material and to random mutation, 
children are potentially more fit than their parents. 
Upon the creation of each new generation, the 
finesses are once again evaluated and the process 
repeats. In this way, the population theoretically 
converges on an optimal solution or a close 
approximation thereof.  
 
 
The Objective Function and Goal 
 GAs must have some objective function 
that not only defines the solution space of the 
problem but also provides a method for evaluating 
the fitness of each individual in each generation. 
In this case, fitness is defined by a protein 
alignment score as executed by JAligner 
(Moustafa, 2007), an open-source, Java-based 
implementation of  the Smith-Waterman sequence 
alignment algorithm (Smith and Waterman, 
1981). The Smith-Waterman algorithm is best 
suited for the purposes of a GA because it 
performs local alignment, giving a more dynamic 
evolution than a global alignment algorithm such 
as the Needleman-Wunsch. The protein selected is 
of no particular consequence; in this study, a 132 
amino acid long retinol-binding protein from the 
Bos taurus was used (NCBI Accession 
#AB28336). Fitness was defined simply as:  
 

F(X) =
alignment score

perfect score
 

 
where a perfect score was determined by 
performing a self-alignment. This yields values 
from 0 to 1. 
 Ideally, we would like to begin with a 
population of random individuals and arrive the 
goal protein. When we consider that this is an N-



dimensional problem, where N is the number of 
amino acids in the protein, the task seems 
impossible. Luckily, we are aided by the fact that 
the solutions themselves are not continuous. Of 
course, this leads to the conclusion that we could 
simply enumerate every possible sequence of 
length N and do a multiple alignment to determine 
which proteins are the closest to the goal. In fact, 
we already know the optimal solution – it is 
simply the goal protein! Rather than focus on 
finding the solution, however, this study 
investigates if and how that solution is reached.  
 
 
Encoding individuals 
 In the traditional implementation of the 
algorithm, individuals in the population are 
represented as one-dimensional “chromosomes” 
that encode the solution in some problem-specific 
way. This simplistic formulation is beneficial as it 
allows for the easy operation of mutation and 
recombination that can simulate the natural 
processes off which they are based. Binary bits 
are often used, but studies using real-valued 
encodings have shown improvements in speed 
and accuracy (Davis, 1991; Janikow and 
Michalewicz, 1991). For many implementations, 
it can be somewhat of a hurdle to encode a 
complex solution into a one-dimensional 
chromosome. As an example, we can suggest a 
toy problem in which we attempt to minimize the 
quartic function: 
 

  f (x, y) =
1

4
x

4
! 7x3

+
1

13
x + 4y2

for  -50 ! x ! 50   and    -50 ! y ! 50

 

 
A chromosome-like encoding the solutions for x 
and y could be created, using binary digits, such 
as: 
 

 

10100

x = 20

101010

y = 42
 

 
Unfortunately, using binary digits comes with the 
complication of variable-length chromosomes, 

which may necessitate potentially cumbersome 
bookkeeping measures. Using a real number 
chromosome encoding of “2042” is potentially 
more helpful, but with so little information to 
mutate, the solution space becomes too coarse and 
thus more random, hindering the smooth traversal 
of the solution space.  
 Fortunately, by bringing the fundamental 
concepts of the GA back to their natural 
environment, these problems are alleviated! 
Chromosomes are encoded as they would be in 
nature. An RNA sequence, as opposed to a DNA 
sequence, is used to ease the translation to from 
nucleotides to amino acids, though the choice is 
not important in any other respect. The alphabet 
used is simply the set of RNA nucleotides, 
“AGCU.” Though the Smith-Waterman algorithm 
can handle both nucleotide sequences as well as 
amino acid sequences, due to the obvious length 
of the nucleotide sequence, performance is much 
faster with amino acids. Conversely, the methods 
of random mutation and genetic modification are 
more natural at a nucleotide level. The best option 
is to perform all genetic operations on the 
nucleotides and translate to amino acids solely for 
the purposes of JAligner. 
  
Selection 
 After the creation of each generation, the 
finesses of the individuals are ranked. At this 
point, there must be some method for picking 
individuals to “mate” – to exchange genetic 
material to produce new individuals. Ideally, 
better-fit individuals will have a higher 
probability of mating. It is important, however, 
that some less-fit individuals to reproduce as well; 
these individuals are often the source of (good) 
genetic variation. This is particularly true in GAs 
as populations often become saturated with one 
chromosome, usually the current best fit. In such 
homogenous populations, the lack of variation 
causes evolution to slow dramatically. One main 
research area in GAs is to determine how to 
determine and adapt variation efficiently to obtain 
an optimal solution (Andre, et al., 2001). Good 



Figure 1. Members of the family e!N "a"R(X )  for a = 
0.002...0.010. The probability of being picked for mating, 
P(X), is dependent on the rank of the finesses. Higher values 
of a give provide a higher selection pressure. 

Figure 2. Exponential selection performs better than 
proportional selection, though the value of a appears not to 
be a factor. This is most likely due to a highly homogenous 
population, which decreases the impact of ranking and 
selection. The dotted lines are individual runs and the solid 
line is the mean of that set. 

selection pressure is known to be an important 
aspect of algorithm performance 
 Several selection methods have 
traditionally been used in GAs. Roulette-wheel 
selection is the most popular. This is essentially a 
proportional selection where the probability of a 
chromosome being picked to mate is given by: 
 

P X( ) =
F X( ) + !

F X
i( )

i"I

#
 

 
where F(X) is the fitness of chromosome X, I is 
the set of all chromosomes in the population, and 
ε is some small value so as to avoid a near-null 
probability for lower fit chromosomes. In 
practice, this can be achieved by creating a vector 
of size S and filling it with instances of the 
chromosomes such that a chromosome with 
probability P/S would be instantiated P times. A 
simple random selection from the vector will 
provide accurate selection.  

Other popular methods include tournament 
selection (Miller and Goldberg, 1995) and 
stochastic universal sampling (Baker, 1987), 
which are essentially variations on proportional 
selection. More abstract and complicated selection 
methods have been suggested but here a novel one 

is presented. An exponential selection can be 
formulated as: 

 
P X( ) = e!N "a"R X( )  

 
where N is the number of individuals in the 
population (here, always 50), a is some small 
value, and R(X) is the rank of chromosome X, 
where the chromosome with the best fitness has 
rank 0, the next with has rank 1, etc. Choosing a 
value of a from 0.001 to 0.0001 gives a good 
range of selection pressure (Figure 1). This 
selection method can be implemented easily: 
simply select some random cutoff from 0 to 1 and 
then randomly select a chromosome with a 
probability, P(X), greater than this value. In 
practice, this method performs better than 
proportional selection regardless of the value of a 
(Figure 2). Because populations tend to evolve to 
be rather homogenous, most chromosomes have 
equal or approximately equal fitness. In the case 
of proportional selection, this causes the algorithm 
to degenerate to an essentially random selection 
choice. Ranking the chromosomes, in most cases, 
preserves the small differences between 
chromosomes.  
 
Genetic Operators 



 In nature, random operation on the genetic 
code is the source of variation that drives 
evolution. This includes: 
  

• Point mutation – change in one nucleotide 
• Inversions – the change in order of several 

nucleotides 
• Transposition – the introduction of one or 

several groups of some number of 
nucleotides 

• Deletions – the deletion of several 
nucleotides 

 
All of the above were incorporated into this 
implementation of the GA to make it as natural as 
possible. After two chromosomes have been 
chosen to mate, each is operated on with a 
probability of pmut (for each of the above types). 
 It has been reported that genetic 
algorithms work most efficiently with mutation 
rates near pmut = 0.001 (0.1%). Of the small values 
of pmut tested, a mutation probability of 0.0015 
(0.15%) was optimal. There was, however, a huge 
improvement in the success of the algorithm when 
higher mutation probabilities were tested. A value 
of 0.1 was optimal for this problem and one run at 
this mutation probability did converge on the goal 
protein, proving that genetic algorithms can in 
fact be successfully applied to the protein 

sequence problem (Figure 3). There is, however, a 
limit to pmut; values of 0.3 and 0.6 performed 
worse than pmut = 0.1, though pmut = 0.3 did better 
than smaller values.  
 These findings are in contrast with the 
mutation probabilities commonly found in the 
literature. The argument that a mutation rate of 
0.1% mirrors that found in nature is irrelevant as 
the time course of the GA and of nature are not 
comparable. It is likely that mutation probabilities 
are problem-specific and, at least for the case of 
protein similarity, higher mutation intuitively 
increases the population diversity and can 
converge to the optimal solution. Extremely high 
mutation rates, however, force the algorithm to 
degenerate into a random search. There is a line 
between successful and unsuccessful values of 
pmut, though determining an acceptable range is 
not easy based on reasoning alone.  
 
Crossover 
 Crossover is the mechanism by which two 
new individuals are created from two parental 
chromosomes. In nature, this action can be 
simplified to two different types: single and 
double crossover (Figure 4). Both of these types 
are simulated in the GA, each with a probability 
of 0.5. In other implementations, the location of 
the crossover point can be a concern, as improper 
crossover may disrupt the encoding of the 
variables on the chromosome. In these 
simulations, however, there is no such problem; 
the chromosome and the information contained 
therein are not sensitive to the location breaks or 
crossovers.  
 
 
 
 
 
 
 
 

Figure 3. Varying the mutation rate has a significant impact 
on the success of the algorithm. Here, a run of p = 0.1 
reached a similarity of 95% and was considered to have 
converged. Very low mutation rates and very high mutation 
rates show poor performance. Some evolutions are reported 
through 5000 iterations due to computational time 
constraints 

Table 1. The average number of unique residues per position 
(URPP) is a good indication of population homogeneity. 
Higher mutation rates yield populations that are more diverse 



Homogenous Populations 
 Population homogeneity is a significant 
problem faced when using genetic algorithms. In 
the case of protein sequences, homogeneity can be 
defined as the number of unique amino acids per 
position across the chromosomes in the 
population. Initially, the population is random and 
this value is somewhere near 20. Very often, 
however, within the first few iterations, the 
number of unique amino acids decreases 
dramatically to some relatively stable value for 
the rest of the simulation. This is generally 
dependent most importantly on the mutation rate 
(Table 1).   
 There is a large focus in the literature on 
determining effective ways to increase population 
heterogeneity (Beyer, et al., 2002; Smith, et al., 
1993). It is true that homogeneous populations 
traverse the solution space much more slowly than 
heterogeneous ones but a diverse population alone 
will not ensure optimal convergence. Increasing 
the pmut does increase population diversity but at 
high rates of mutation, the algorithm converges on 
a sub-optimal solution.  
 
Simulation Time 
 GAs are not inherently computationally 
intensive, but the parameters used and the 
peculiarities of the problem may cause 
computation time to be a constraint. In this study, 
one main limitation was the time required to 
perform an alignment, which is generally greater 
than the execution of the rest of the operations in 
the algorithm. Though one alignment is on the 
order of fractions of second, an alignment is 
performed N x I times per run, where N is the 
number of individuals in the population and I is 
the number of iterations in the simulation. The 
values used here are N = 50 and I = 10000, 
equaling 5 x 105 alignments per evolutionary run. 
Combined with the necessity of performing at 
least five trials for each experimental condition, 
time can quickly become a major factor. To 
exacerbate matters, the Smith-Waterman 
algorithm is sensitive to the length of the 
sequence being aligned; the algorithm operates in 

O(mn) time, where m and n are the length of the 
sequences being aligned. Though it was possible 
to perform all of the experiments reported here on 
a 1.67 GHz Apple PowerBook G4, run times 
often ran into the tens of hours for a set of 
experiments.  
 One obvious solution to the problem of 
time is more processing power. Code optimization 
is also an option. There are, however, more 
“accessible” solutions to improve the speed of the 
algorithm. To decrease the number of alignments 
performed, the score of sequences that have been 
aligned can be saved in a hash table. In relatively 
homogenous populations (average number of 
unique amino acids per position in the population 
! ~3 ), it is beneficial to avoid repeat alignments. 
In these cases, searching through a table is faster 
than doing an alignment and this improvement 
decreases the running time significantly.  
 Unfortunately, for populations that are less 
homogenous (as in the case of a high mutation 
rate), the hash table becomes filled with so many 
unique entries that searching through it quickly 
becomes more intensive than re-aligning a repeat 

Single Crossover 

P 

F1 

Crossover point 

Double Crossover 

P 

F1 

Crossover points 

Figure 4. Two types of crossover. 



sequence. In these cases, the hash table option had 
to be abandoned. Ideally, these two options would 
be leveraged dynamically throughout the 
simulation such that, if the hash table becomes too 
full, the algorithm resorts back to performing 
alignments.  
 
Stop Codons 
 One interesting peculiarity that often arises 
in a wide search of the protein space is the 
appearance of stop codons. In order to be true to 
the nature of translation, stop codons should in 
fact terminate the protein. This can hinder 
evolution, especially in homogenous populations 
(Figure 6, Figure 7). In order to avoid “stunted” 
evolution, stop codons were instead represented 
by a placeholder amino acid, X, which Jaligner 
considers to be a mismatch in every case. 
 
Gap Penalty 
 In addition to the parameters of the 
algorithm itself, the success of this 
implementation also depends largely on the 
properties of the alignment algorithm. One major 
element of the Smith-Waterman algorithm is a 
penalty for both creating a gap and extending a 
gap. Unfortunately, there is no intuitive choice of 
penalties that is robust for all situations. 
 Generally, lower gap penalties generally 
lead to higher scores (Figure 5). There are some 
intricacies related to the gap penalty, however. As 

might be expected, solutions obtained by 
alignment with no gap penalty are not entirely 
cohesive and do have many gaps. The following is 
an example of one such gapped yet high scoring 
alignment that was the result of one evolutionary 
run: 
 
Query MAATVKGRVRLLNNWDIC-DMVSTFTDTERTAGNADPAKFSVK 
alb_bos MSATAKGRVRLLNNWDVCADMVGTFTDTE------DPAKFKMK 
 
Query YSWSLASFLRKGNASLLRLLVSKRLGLSAGRRPGPTRGC---- 
alb_bos Y-WGVASFLQKGN--------------------------RVPQ 
 
Query ST--QMETFAVRWSAR-LTNVDG---LND--------D----- 
alb_bos DTDY--ETFAVQYSCRLL-NLDGTCA—DSYSFVFARDPSGFS 
 
Query P-----------E-C----F-------FTCSD--S-K 
alb_bos PEVQKIVRQRQEELCLARQYRLIPHNGY-C-DGKSER 
 
Score  362.0 / 712.0 = 0.508 
 
 

This can be contrasted the resulting protein from a 
run with a gap penalty of 30.0: 
 
Query HLILKTSFXRVAVQRSCRLRNTSGTLASSYSFVWERDTSMFGP 
 |.|:.|.:...|||.||||.|..||.|.|||||:.||.|.|.| 
alb_bos HWIIDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSP 

 
Query RAEKIVRRRQEEYCAARHYRLAPNSGYASGSSQRQIL 
 ..:||||:||||.|.||.|||.|::||..|.|:|.|| 
alb_bos EVQKIVRQRQEELCLARQYRLIPHNGYCDGKSERNIL 
 
Score 234.0 / 712.0 = 0.329 

Figure 6. Treating stop codons as real termination signals 
can stunt evolution. Here, two runs are held back due to a 
stop codon that has proliferated throughout the population. 
The dotted lines are individual runs and the solid line is 
the mean of that set. It is possible, though not certain, that 
a population may recover from a prolific stop codon (one 
run here appears to). 

Figure 5. Lower gap penalties yield higher scores. The 
nature of the alignment, however, differs greatly as the gap 
size changes. Here, gap creation penalties are reported. 
Gap extension penalties are 0.1 * Gap Penalty. 



 High gap penalties intuitively select 
against alignments with gaps. Interestingly, 
though, even the sequences obtained with low gap 
penalties score higher when high penalties are 
applied to them than the sequences obtained 
operating with high penalties. Gap-tolerant 
alignments are more lenient and thus the 
algorithm is able to take more of the total 
sequence into consideration. This allows for the 
simultaneous optimization of spatially disparate 
regions of the chromosome.  
 Given the number of gaps in the alignment 
with no penalty, however, one could argue this 
solution seems less correct than the alignment 
with a high penalty. In fact, though zero gap 
penalty alignments give high scoring solutions, a 
gap penalty of zero is discouraged, as there is no 
consequence for extremely long chromosomes. 

There must exist a balance, then, between the 
desire to allow gaps in order to improve evolution 
and the desire to obtain a good, cohesive solution. 
This is, in part, a subjective question depending 
on one’s interpretation of a “good” alignment.  
 A gap penalty of 9.0 yielded runs that 
converged (defined as at least 95% similarity) on 
the goal protein. These alignments were solid 
across the entire length of the protein and 
contained few (if any) gaps: 
 
Query MSATAKGRVRLLNSWDVAADMVGTFTDTEDPAKFKLK 
       |||||||||||||:|||.|||||||||||||||||:| 
alb_bos MSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMK  
 
Query YWGVASFLQKGNDDHWIIDTDYETFAVQYSARLLNLD 
 ||||||||||||||||||||||||||||||.|||||| 
alb_bos YWGVASFLQKGNDDHWIIDTDYETFAVQYSCRLLNLD 
 
Query GTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLSR 
 |||||||||||||||||||||||||||||||||||:| 
alb_bos GTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLAR 
 

Figure 5. A visualization of a population through early evolution. Nucleotides are each colored with a different color, with 
the exception of sequences “UAG”, “UGA”, and “UAA” (the stop codons), which are colored in white. Though some 
variation exists, homogenization is apparent. It this run, a stop codon proliferated across the population. If these codons are 
allowed to terminate the protein, the evolution is often stunted. 



Query QYRLIPHNGYCSGKSERNIL 
 |||||||||||.|||||||| 
alb_bos QYRLIPHNGYCDGKSERNIL 
 
Score 677.0 / 712.0 = 0.951 
 

 Though a gap penalty of 9.0 allowed the 
algorithm to converge properly, it is not clear 
whether other gap penalties would yield similar 
results. More investigations on the effect of the 
penalty must be performed for a more complete 
understanding.  
 

The Future 
 Here, it is proven that genetic algorithms 
can in fact be successfully applied to the problem 
of protein sequence. Exploring the implications 
and details of this application will yield new 
insights both about the nature of protein evolution 
and that of GAs. Some considerations for future 
work were made apparent by this study: 
 Although the alignment score was a 
relatively robust way of evaluating the fitness of 
chromosomes, perhaps a more holistic method 
could be applied. A solid technique may require 
combining some properties of a simple Smith-
Waterman alignment with others tailored to the 
specific problem. Leveraging the number of gaps 
with the desire to explore a wide range of 
sequences is important for this goal.  
 In this study, the BLOSUM62 matrix was 
used for all alignments. Performance is most 
certainly dependent on the matrix used and using 
others may prove beneficial. Substitution matrices 
are essentially a quantification of the rate of 
mutation between the amino acids, whether from 
Dayhoff in the case of the PAM matrices or from 
Henikoff and Henikoff in the case of the 
BLOSUM matrices (Dayhoff, et al., 1978; 
Henikoff and Henikoff, 1992). Greater measures 
could be taken to incorporate these rates into the 
actual point mutation rate. In this study, point 
mutations were done at random; a more accurate 
method would take into account the amino acid 
being mutated and determine an appropriate 
replacement based on the scoring matrix used. 
Tailoring the mutation rate to the matrix or even 
creating a new matrix based on some alternate 
mutation scheme would most likely improve 

results. Along the same lines, rather than 
initializing the population with random 
chromosomes, sequences could be picked that 
stay true to the natural amino acid distribution.  
 An investigation of the topology of the 
solution space may improve the understanding of 
why certain populations do or do not converge on 
optimal solutions. Traditionally, suboptimal 
solutions are due either to homogenous 
populations or to local extrema. Describing the 
space for a purely mathematical function is as 
easy as visualizing the function but for protein 
sequence some other method of description is 
necessary. The solutions to the protein alignment 
problem are discretized, which allows for the full 
comprehension of the space, but exploring and 
reasoning about its characteristics and 
implications is a more complicated task. Do local 
maxima / minima exist? Is the space monotonic? 
These questions require a more in-depth analysis 
of the complete set of solutions to a protein 
alignment. 
 Although the path of the evolution towards 
the goal protein in a genetic algorithm does not 
exactly replicate the evolution of proteins in 
nature, some similarities must exist. To simulate 
the full range of a protein’s evolution though time, 
one could envision a set of objective proteins 
corresponding to the temporal evolution of a real 
protein. Once a random population evolves 
towards a protein in a lower organism, the 
objective function could be changed and the 
population could be directed towards a protein 
later in evolution. This could be done for a 
sequence of several proteins to model the progress 
from some low-level organism protein to the 
human version.  
 In order to make the evolution of proteins 
in genetic algorithms more like the evolution of 
real proteins, we must ask what the objective 
function in nature is. Very often, the fitness of a 
protein  in nature is close to 0 or 1; while some 
proteins are in fact robust, many are not resilient 
to changes in amino acid sequence. Unfortunately, 
the fitness of a protein is unknown until it is 
allowed to function. One method of improving a 



GA in this way would be to inform the algorithm 
of known functional blocks. A protein with one or 
more of these blocks would have a high fitness. 
Chromosomes could be separated into separate 
genes and might be put into virtual environments 
with other small molecules. Upon running the 
simulation, chromosomes that encode for proteins 
that, together, perform some useful function (like 
the creation of biomass) would be given a higher 
fitness. This is a large undertaking but would not 
be out of the question once the parameters of a 
genetic algorithm in the protein sequence space 
have been properly worked out.  
 Finally, though tinkering with the 
parameters of an algorithm is useful in gaining an 
understanding of how it works, this method is 
time consuming and often unintuitive. A machine-
learning algorithm (perhaps another GA!) could 
be used to automate this process and arrive at a 
problem-specific set of conditions under which 
the most optimal solutions are reached. An 
efficient, general learning algorithm for the 
purposes of tuning a GA would be of great value 
to those working with these algorithms.  
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