
Investigations into a Genetic Algorithm for Protein Sequences
Selwyn-Lloyd McPherson

Biochemistry 218, Winter 2007 – Professor Doug Brutlag

Introduction

 In recent years, researchers from many
scientific fields have been looking to a range of
biological processes to inform new techniques and
algorithms for tackling challenging problems in
engineering and mathematics. As our
understanding of the details of biological
phenomena deepens, we are presented with an
increasing number of naturally occurring, simple,
yet powerful computational methods that exist in
nature to perform some useful function. Some of
these methods have adapted to serve purposes
outside of their natural habitat. Biologically
inspired algorithms are beginning to take hold in
many areas of study but none has benefited as
significantly as the field of optimization – the
search across an often complex space for an
optimal solution, usually a global maximum or
minimum. In cases where brute force or even
more conventional optimization techniques fail,
these new algorithms offer the promise of finding
true global extrema.

Particle Swarm Optimization

One interesting algorithm is Particle
Swarm Optimization (PSO) which attempts to
model the group movement of insect swarms in
order to efficiently traverse a solution space
(Kennedy and Eberhart, 1995),. In biology, if one
member of a swarm notices a beneficial place or
entity (such as protection or food), that member
will move towards it. Consequently, this
information will be transferred to the rest of the
group – the other group members will “notice”
and the mean direction of the swarm will be
directed towards that item. Eventually, the swarm
will arrive at the place of interest. Similarly, we
can imagine such a swarm traveling through a
virtual solution space in which individuals are
attracted to extrema defined by some objective

function that describes the space. If virtual
particles are given properties similar to their
natural counterparts, they, too, will ideally
converge at the optimal solution.

PSO is a great example of a successful
transition from the world of biology to the world
of computation. The algorithm itself is simple;
each particle is defined by only two properties –
the current position and current velocity.
Population-level variables number four to five at
most. The method is easily reusable for a variety
of different problems, as the particles may exist in
a multidimensional space. In addition, because of
the semistochastic property of swarms, they are
able to explore a space better than a completely
deterministic system. At the same time that the
group is being pulled towards a particular
minimum or maximum, a random component of
the particles’ velocities (their search trajectories)
allows members to explore nearby spaces,
decreasing the probability of getting stuck in a
local extrema.

Increasing Interest and Success

Of course, PSO is not the only successful
biologically inspired algorithm. Ant Colony
Optimization, which utilizes the theory of
communication networks in ant populations, is
being used to solve complex graph theory
problems (Dorigo and Gambardella, 1997).
Neural networks, which are loosely modeled after
cortical structures in the brain, are also proving to
be an important addition to many engineering
fields including regression analysis, classification
and data processing. Neural networks also enjoy
wide use in the bioinformatics community where
they are used for sequence analysis, classification
and alignment (Blekas, et al., 2005; Rost, 1996).
In an attempt to take neural networks further and
to better simulate their natural counterparts,
several projects around the country, including one

here at Stanford in the Boahen lab, are aiming to
create large silicon brains from anywhere between
several thousand neurons to 1011 neurons, the
approximate number in a human brain (Boahen
and Zaghloul, 2006; Izhikevich, 2006). These
systems, apart from deepening our understanding
of the brain, can actually be used for computation.
 One of the most successful biologically
inspired algorithms, however, is the Genetic
Algorithm (Goldberg, 1989), which has been used
with great success to solve large-scale
optimization problems where other algorithms
often fail.

Genetic Algorithms

 A Genetic Algorithm (GA) is a global
search heuristic that uses the basics of natural
selection at a genetic level to evolve a population
of initially poor solutions towards a problem-
specific optimal solution. The fundamentals of the
algorithm are familiar to those with even a modest
biological background – they include
reproduction (with genetic recombination, i.e.
crossover), mutation and selection. While many
non-biological fields have borrowed this powerful
form of optimization, it has rarely (if ever) been
brought back to its native environment, i.e. that of
actual genetic information. The goal of the
experiments detailed below was to determine if
and how GAs could successfully used to operate
on protein sequences. Furthermore, because
genetic algorithms are commonly plagued by slow
and often suboptimal convergence, these
experiments are also an investigation into the
alleviation of these common problems in the
space of genetic sequences.

The Algorithm
 Conceptually, the algorithm takes an
initial, usually randomized population of poor
solutions to an optimization problem and attempts
to determine a best solution by utilizing the
concept of natural selection to evolve the

population. With each new iteration (or
generation) of the algorithm, the fitness of the
solutions (the individuals) in the population is
calculated. Individuals with higher finesses are
more likely to “reproduce,” spawning similar
solutions in the next generation. Like offspring in
nature, however, these children are not identical to
their parents. Due both to the recombination of the
parental genetic material and to random mutation,
children are potentially more fit than their parents.
Upon the creation of each new generation, the
finesses are once again evaluated and the process
repeats. In this way, the population theoretically
converges on an optimal solution or a close
approximation thereof.

The Objective Function and Goal
 GAs must have some objective function
that not only defines the solution space of the
problem but also provides a method for evaluating
the fitness of each individual in each generation.
In this case, fitness is defined by a protein
alignment score as executed by JAligner
(Moustafa, 2007), an open-source, Java-based
implementation of the Smith-Waterman sequence
alignment algorithm (Smith and Waterman,
1981). The Smith-Waterman algorithm is best
suited for the purposes of a GA because it
performs local alignment, giving a more dynamic
evolution than a global alignment algorithm such
as the Needleman-Wunsch. The protein selected is
of no particular consequence; in this study, a 132
amino acid long retinol-binding protein from the
Bos taurus was used (NCBI Accession
#AB28336). Fitness was defined simply as:

F(X) =
alignment score

perfect score

where a perfect score was determined by
performing a self-alignment. This yields values
from 0 to 1.
 Ideally, we would like to begin with a
population of random individuals and arrive the
goal protein. When we consider that this is an N-

dimensional problem, where N is the number of
amino acids in the protein, the task seems
impossible. Luckily, we are aided by the fact that
the solutions themselves are not continuous. Of
course, this leads to the conclusion that we could
simply enumerate every possible sequence of
length N and do a multiple alignment to determine
which proteins are the closest to the goal. In fact,
we already know the optimal solution – it is
simply the goal protein! Rather than focus on
finding the solution, however, this study
investigates if and how that solution is reached.

Encoding individuals
 In the traditional implementation of the
algorithm, individuals in the population are
represented as one-dimensional “chromosomes”
that encode the solution in some problem-specific
way. This simplistic formulation is beneficial as it
allows for the easy operation of mutation and
recombination that can simulate the natural
processes off which they are based. Binary bits
are often used, but studies using real-valued
encodings have shown improvements in speed
and accuracy (Davis, 1991; Janikow and
Michalewicz, 1991). For many implementations,
it can be somewhat of a hurdle to encode a
complex solution into a one-dimensional
chromosome. As an example, we can suggest a
toy problem in which we attempt to minimize the
quartic function:

 f (x, y) =
1

4
x

4
! 7x3

+
1

13
x + 4y2

for -50 ! x ! 50 and -50 ! y ! 50

A chromosome-like encoding the solutions for x
and y could be created, using binary digits, such
as:

10100

x = 20

101010

y = 42

Unfortunately, using binary digits comes with the
complication of variable-length chromosomes,

which may necessitate potentially cumbersome
bookkeeping measures. Using a real number
chromosome encoding of “2042” is potentially
more helpful, but with so little information to
mutate, the solution space becomes too coarse and
thus more random, hindering the smooth traversal
of the solution space.
 Fortunately, by bringing the fundamental
concepts of the GA back to their natural
environment, these problems are alleviated!
Chromosomes are encoded as they would be in
nature. An RNA sequence, as opposed to a DNA
sequence, is used to ease the translation to from
nucleotides to amino acids, though the choice is
not important in any other respect. The alphabet
used is simply the set of RNA nucleotides,
“AGCU.” Though the Smith-Waterman algorithm
can handle both nucleotide sequences as well as
amino acid sequences, due to the obvious length
of the nucleotide sequence, performance is much
faster with amino acids. Conversely, the methods
of random mutation and genetic modification are
more natural at a nucleotide level. The best option
is to perform all genetic operations on the
nucleotides and translate to amino acids solely for
the purposes of JAligner.

Selection
 After the creation of each generation, the
finesses of the individuals are ranked. At this
point, there must be some method for picking
individuals to “mate” – to exchange genetic
material to produce new individuals. Ideally,
better-fit individuals will have a higher
probability of mating. It is important, however,
that some less-fit individuals to reproduce as well;
these individuals are often the source of (good)
genetic variation. This is particularly true in GAs
as populations often become saturated with one
chromosome, usually the current best fit. In such
homogenous populations, the lack of variation
causes evolution to slow dramatically. One main
research area in GAs is to determine how to
determine and adapt variation efficiently to obtain
an optimal solution (Andre, et al., 2001). Good

Figure 1. Members of the family e!N "a"R(X) for a =
0.002...0.010. The probability of being picked for mating,
P(X), is dependent on the rank of the finesses. Higher values
of a give provide a higher selection pressure.

Figure 2. Exponential selection performs better than
proportional selection, though the value of a appears not to
be a factor. This is most likely due to a highly homogenous
population, which decreases the impact of ranking and
selection. The dotted lines are individual runs and the solid
line is the mean of that set.

selection pressure is known to be an important
aspect of algorithm performance
 Several selection methods have
traditionally been used in GAs. Roulette-wheel
selection is the most popular. This is essentially a
proportional selection where the probability of a
chromosome being picked to mate is given by:

P X() =
F X() + !

F X
i()

i"I

#

where F(X) is the fitness of chromosome X, I is
the set of all chromosomes in the population, and
ε is some small value so as to avoid a near-null
probability for lower fit chromosomes. In
practice, this can be achieved by creating a vector
of size S and filling it with instances of the
chromosomes such that a chromosome with
probability P/S would be instantiated P times. A
simple random selection from the vector will
provide accurate selection.

Other popular methods include tournament
selection (Miller and Goldberg, 1995) and
stochastic universal sampling (Baker, 1987),
which are essentially variations on proportional
selection. More abstract and complicated selection
methods have been suggested but here a novel one

is presented. An exponential selection can be
formulated as:

P X() = e!N "a"R X()

where N is the number of individuals in the
population (here, always 50), a is some small
value, and R(X) is the rank of chromosome X,
where the chromosome with the best fitness has
rank 0, the next with has rank 1, etc. Choosing a
value of a from 0.001 to 0.0001 gives a good
range of selection pressure (Figure 1). This
selection method can be implemented easily:
simply select some random cutoff from 0 to 1 and
then randomly select a chromosome with a
probability, P(X), greater than this value. In
practice, this method performs better than
proportional selection regardless of the value of a
(Figure 2). Because populations tend to evolve to
be rather homogenous, most chromosomes have
equal or approximately equal fitness. In the case
of proportional selection, this causes the algorithm
to degenerate to an essentially random selection
choice. Ranking the chromosomes, in most cases,
preserves the small differences between
chromosomes.

Genetic Operators

 In nature, random operation on the genetic
code is the source of variation that drives
evolution. This includes:

• Point mutation – change in one nucleotide
• Inversions – the change in order of several

nucleotides
• Transposition – the introduction of one or

several groups of some number of
nucleotides

• Deletions – the deletion of several
nucleotides

All of the above were incorporated into this
implementation of the GA to make it as natural as
possible. After two chromosomes have been
chosen to mate, each is operated on with a
probability of pmut (for each of the above types).
 It has been reported that genetic
algorithms work most efficiently with mutation
rates near pmut = 0.001 (0.1%). Of the small values
of pmut tested, a mutation probability of 0.0015
(0.15%) was optimal. There was, however, a huge
improvement in the success of the algorithm when
higher mutation probabilities were tested. A value
of 0.1 was optimal for this problem and one run at
this mutation probability did converge on the goal
protein, proving that genetic algorithms can in
fact be successfully applied to the protein

sequence problem (Figure 3). There is, however, a
limit to pmut; values of 0.3 and 0.6 performed
worse than pmut = 0.1, though pmut = 0.3 did better
than smaller values.
 These findings are in contrast with the
mutation probabilities commonly found in the
literature. The argument that a mutation rate of
0.1% mirrors that found in nature is irrelevant as
the time course of the GA and of nature are not
comparable. It is likely that mutation probabilities
are problem-specific and, at least for the case of
protein similarity, higher mutation intuitively
increases the population diversity and can
converge to the optimal solution. Extremely high
mutation rates, however, force the algorithm to
degenerate into a random search. There is a line
between successful and unsuccessful values of
pmut, though determining an acceptable range is
not easy based on reasoning alone.

Crossover
 Crossover is the mechanism by which two
new individuals are created from two parental
chromosomes. In nature, this action can be
simplified to two different types: single and
double crossover (Figure 4). Both of these types
are simulated in the GA, each with a probability
of 0.5. In other implementations, the location of
the crossover point can be a concern, as improper
crossover may disrupt the encoding of the
variables on the chromosome. In these
simulations, however, there is no such problem;
the chromosome and the information contained
therein are not sensitive to the location breaks or
crossovers.

Figure 3. Varying the mutation rate has a significant impact
on the success of the algorithm. Here, a run of p = 0.1
reached a similarity of 95% and was considered to have
converged. Very low mutation rates and very high mutation
rates show poor performance. Some evolutions are reported
through 5000 iterations due to computational time
constraints

Table 1. The average number of unique residues per position
(URPP) is a good indication of population homogeneity.
Higher mutation rates yield populations that are more diverse

Homogenous Populations
 Population homogeneity is a significant
problem faced when using genetic algorithms. In
the case of protein sequences, homogeneity can be
defined as the number of unique amino acids per
position across the chromosomes in the
population. Initially, the population is random and
this value is somewhere near 20. Very often,
however, within the first few iterations, the
number of unique amino acids decreases
dramatically to some relatively stable value for
the rest of the simulation. This is generally
dependent most importantly on the mutation rate
(Table 1).
 There is a large focus in the literature on
determining effective ways to increase population
heterogeneity (Beyer, et al., 2002; Smith, et al.,
1993). It is true that homogeneous populations
traverse the solution space much more slowly than
heterogeneous ones but a diverse population alone
will not ensure optimal convergence. Increasing
the pmut does increase population diversity but at
high rates of mutation, the algorithm converges on
a sub-optimal solution.

Simulation Time
 GAs are not inherently computationally
intensive, but the parameters used and the
peculiarities of the problem may cause
computation time to be a constraint. In this study,
one main limitation was the time required to
perform an alignment, which is generally greater
than the execution of the rest of the operations in
the algorithm. Though one alignment is on the
order of fractions of second, an alignment is
performed N x I times per run, where N is the
number of individuals in the population and I is
the number of iterations in the simulation. The
values used here are N = 50 and I = 10000,
equaling 5 x 105 alignments per evolutionary run.
Combined with the necessity of performing at
least five trials for each experimental condition,
time can quickly become a major factor. To
exacerbate matters, the Smith-Waterman
algorithm is sensitive to the length of the
sequence being aligned; the algorithm operates in

O(mn) time, where m and n are the length of the
sequences being aligned. Though it was possible
to perform all of the experiments reported here on
a 1.67 GHz Apple PowerBook G4, run times
often ran into the tens of hours for a set of
experiments.
 One obvious solution to the problem of
time is more processing power. Code optimization
is also an option. There are, however, more
“accessible” solutions to improve the speed of the
algorithm. To decrease the number of alignments
performed, the score of sequences that have been
aligned can be saved in a hash table. In relatively
homogenous populations (average number of
unique amino acids per position in the population
! ~3), it is beneficial to avoid repeat alignments.
In these cases, searching through a table is faster
than doing an alignment and this improvement
decreases the running time significantly.
 Unfortunately, for populations that are less
homogenous (as in the case of a high mutation
rate), the hash table becomes filled with so many
unique entries that searching through it quickly
becomes more intensive than re-aligning a repeat

Single Crossover

P

F1

Crossover point

Double Crossover

P

F1

Crossover points

Figure 4. Two types of crossover.

sequence. In these cases, the hash table option had
to be abandoned. Ideally, these two options would
be leveraged dynamically throughout the
simulation such that, if the hash table becomes too
full, the algorithm resorts back to performing
alignments.

Stop Codons
 One interesting peculiarity that often arises
in a wide search of the protein space is the
appearance of stop codons. In order to be true to
the nature of translation, stop codons should in
fact terminate the protein. This can hinder
evolution, especially in homogenous populations
(Figure 6, Figure 7). In order to avoid “stunted”
evolution, stop codons were instead represented
by a placeholder amino acid, X, which Jaligner
considers to be a mismatch in every case.

Gap Penalty
 In addition to the parameters of the
algorithm itself, the success of this
implementation also depends largely on the
properties of the alignment algorithm. One major
element of the Smith-Waterman algorithm is a
penalty for both creating a gap and extending a
gap. Unfortunately, there is no intuitive choice of
penalties that is robust for all situations.
 Generally, lower gap penalties generally
lead to higher scores (Figure 5). There are some
intricacies related to the gap penalty, however. As

might be expected, solutions obtained by
alignment with no gap penalty are not entirely
cohesive and do have many gaps. The following is
an example of one such gapped yet high scoring
alignment that was the result of one evolutionary
run:

Query MAATVKGRVRLLNNWDIC-DMVSTFTDTERTAGNADPAKFSVK
alb_bos MSATAKGRVRLLNNWDVCADMVGTFTDTE------DPAKFKMK

Query YSWSLASFLRKGNASLLRLLVSKRLGLSAGRRPGPTRGC----
alb_bos Y-WGVASFLQKGN--------------------------RVPQ

Query ST--QMETFAVRWSAR-LTNVDG---LND--------D-----
alb_bos DTDY--ETFAVQYSCRLL-NLDGTCA—DSYSFVFARDPSGFS

Query P-----------E-C----F-------FTCSD--S-K
alb_bos PEVQKIVRQRQEELCLARQYRLIPHNGY-C-DGKSER

Score 362.0 / 712.0 = 0.508

This can be contrasted the resulting protein from a
run with a gap penalty of 30.0:

Query HLILKTSFXRVAVQRSCRLRNTSGTLASSYSFVWERDTSMFGP
 |.|:.|.:...|||.||||.|..||.|.|||||:.||.|.|.|
alb_bos HWIIDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSP

Query RAEKIVRRRQEEYCAARHYRLAPNSGYASGSSQRQIL
 ..:||||:||||.|.||.|||.|::||..|.|:|.||
alb_bos EVQKIVRQRQEELCLARQYRLIPHNGYCDGKSERNIL

Score 234.0 / 712.0 = 0.329

Figure 6. Treating stop codons as real termination signals
can stunt evolution. Here, two runs are held back due to a
stop codon that has proliferated throughout the population.
The dotted lines are individual runs and the solid line is
the mean of that set. It is possible, though not certain, that
a population may recover from a prolific stop codon (one
run here appears to).

Figure 5. Lower gap penalties yield higher scores. The
nature of the alignment, however, differs greatly as the gap
size changes. Here, gap creation penalties are reported.
Gap extension penalties are 0.1 * Gap Penalty.

 High gap penalties intuitively select
against alignments with gaps. Interestingly,
though, even the sequences obtained with low gap
penalties score higher when high penalties are
applied to them than the sequences obtained
operating with high penalties. Gap-tolerant
alignments are more lenient and thus the
algorithm is able to take more of the total
sequence into consideration. This allows for the
simultaneous optimization of spatially disparate
regions of the chromosome.
 Given the number of gaps in the alignment
with no penalty, however, one could argue this
solution seems less correct than the alignment
with a high penalty. In fact, though zero gap
penalty alignments give high scoring solutions, a
gap penalty of zero is discouraged, as there is no
consequence for extremely long chromosomes.

There must exist a balance, then, between the
desire to allow gaps in order to improve evolution
and the desire to obtain a good, cohesive solution.
This is, in part, a subjective question depending
on one’s interpretation of a “good” alignment.
 A gap penalty of 9.0 yielded runs that
converged (defined as at least 95% similarity) on
the goal protein. These alignments were solid
across the entire length of the protein and
contained few (if any) gaps:

Query MSATAKGRVRLLNSWDVAADMVGTFTDTEDPAKFKLK
 |||||||||||||:|||.|||||||||||||||||:|
alb_bos MSATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMK

Query YWGVASFLQKGNDDHWIIDTDYETFAVQYSARLLNLD
 ||||||||||||||||||||||||||||||.||||||
alb_bos YWGVASFLQKGNDDHWIIDTDYETFAVQYSCRLLNLD

Query GTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLSR
 |||||||||||||||||||||||||||||||||||:|
alb_bos GTCADSYSFVFARDPSGFSPEVQKIVRQRQEELCLAR

Figure 5. A visualization of a population through early evolution. Nucleotides are each colored with a different color, with
the exception of sequences “UAG”, “UGA”, and “UAA” (the stop codons), which are colored in white. Though some
variation exists, homogenization is apparent. It this run, a stop codon proliferated across the population. If these codons are
allowed to terminate the protein, the evolution is often stunted.

Query QYRLIPHNGYCSGKSERNIL
 |||||||||||.||||||||
alb_bos QYRLIPHNGYCDGKSERNIL

Score 677.0 / 712.0 = 0.951

 Though a gap penalty of 9.0 allowed the
algorithm to converge properly, it is not clear
whether other gap penalties would yield similar
results. More investigations on the effect of the
penalty must be performed for a more complete
understanding.

The Future
 Here, it is proven that genetic algorithms
can in fact be successfully applied to the problem
of protein sequence. Exploring the implications
and details of this application will yield new
insights both about the nature of protein evolution
and that of GAs. Some considerations for future
work were made apparent by this study:
 Although the alignment score was a
relatively robust way of evaluating the fitness of
chromosomes, perhaps a more holistic method
could be applied. A solid technique may require
combining some properties of a simple Smith-
Waterman alignment with others tailored to the
specific problem. Leveraging the number of gaps
with the desire to explore a wide range of
sequences is important for this goal.
 In this study, the BLOSUM62 matrix was
used for all alignments. Performance is most
certainly dependent on the matrix used and using
others may prove beneficial. Substitution matrices
are essentially a quantification of the rate of
mutation between the amino acids, whether from
Dayhoff in the case of the PAM matrices or from
Henikoff and Henikoff in the case of the
BLOSUM matrices (Dayhoff, et al., 1978;
Henikoff and Henikoff, 1992). Greater measures
could be taken to incorporate these rates into the
actual point mutation rate. In this study, point
mutations were done at random; a more accurate
method would take into account the amino acid
being mutated and determine an appropriate
replacement based on the scoring matrix used.
Tailoring the mutation rate to the matrix or even
creating a new matrix based on some alternate
mutation scheme would most likely improve

results. Along the same lines, rather than
initializing the population with random
chromosomes, sequences could be picked that
stay true to the natural amino acid distribution.
 An investigation of the topology of the
solution space may improve the understanding of
why certain populations do or do not converge on
optimal solutions. Traditionally, suboptimal
solutions are due either to homogenous
populations or to local extrema. Describing the
space for a purely mathematical function is as
easy as visualizing the function but for protein
sequence some other method of description is
necessary. The solutions to the protein alignment
problem are discretized, which allows for the full
comprehension of the space, but exploring and
reasoning about its characteristics and
implications is a more complicated task. Do local
maxima / minima exist? Is the space monotonic?
These questions require a more in-depth analysis
of the complete set of solutions to a protein
alignment.
 Although the path of the evolution towards
the goal protein in a genetic algorithm does not
exactly replicate the evolution of proteins in
nature, some similarities must exist. To simulate
the full range of a protein’s evolution though time,
one could envision a set of objective proteins
corresponding to the temporal evolution of a real
protein. Once a random population evolves
towards a protein in a lower organism, the
objective function could be changed and the
population could be directed towards a protein
later in evolution. This could be done for a
sequence of several proteins to model the progress
from some low-level organism protein to the
human version.
 In order to make the evolution of proteins
in genetic algorithms more like the evolution of
real proteins, we must ask what the objective
function in nature is. Very often, the fitness of a
protein in nature is close to 0 or 1; while some
proteins are in fact robust, many are not resilient
to changes in amino acid sequence. Unfortunately,
the fitness of a protein is unknown until it is
allowed to function. One method of improving a

GA in this way would be to inform the algorithm
of known functional blocks. A protein with one or
more of these blocks would have a high fitness.
Chromosomes could be separated into separate
genes and might be put into virtual environments
with other small molecules. Upon running the
simulation, chromosomes that encode for proteins
that, together, perform some useful function (like
the creation of biomass) would be given a higher
fitness. This is a large undertaking but would not
be out of the question once the parameters of a
genetic algorithm in the protein sequence space
have been properly worked out.
 Finally, though tinkering with the
parameters of an algorithm is useful in gaining an
understanding of how it works, this method is
time consuming and often unintuitive. A machine-
learning algorithm (perhaps another GA!) could
be used to automate this process and arrive at a
problem-specific set of conditions under which
the most optimal solutions are reached. An
efficient, general learning algorithm for the
purposes of tuning a GA would be of great value
to those working with these algorithms.

References

Andre, J., Siarry, P. and Dognon, T. (2001) An improvement of the standard genetic algorithm fighting
premature convergence in continuous optimization, Advances in Engineering Software, 49-60.

Baker, J.E. (1987) Reducing Bias and Inefficiency in the Selection Algorithm. Proceedings of the
Second International Conference on Genetic Algorithms and their Application (Hillsdale), 14-21.

Beyer, H.-G., Schwefel, H.-P. and Wegener, I. (2002) How to analyse evolutionary algorithms.
University of Dortmund, Dortmund, Germany.

Blekas, K., Fotiadis, D. and Likas, A. (2005) Motif-based Protein Sequence Classification Using Neural
Networks, Journal of Computational Biology, 12, 64-82.

Boahen, K. and Zaghloul, K.A. (2006) A silicon retina that reproduces signals in the optic nerve,
Journal of Neural Engineering, 3, 257-267.

Davis, L. (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York.

Dayhoff, M.O., Schwartz, R.M. and Orcutt, B.C. (1978) A Model of Evolutionary Change in Proteins, in
Atlas of Protein Sequence and Structure.

Dorigo, M. and Gambardella, L.M. (1997) Ant Colony System: A Cooperative Learning Approach to
the Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation, 1, 53-66.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer
Academic Publishers, Boston, MA.

Henikoff, S. and Henikoff, J. (1992) Amino Acid Substitution Matrices from Protein Blocks, PNAS, 89,
10915-10919.

Izhikevich, E.M. (2006) Polychronization: Computation with Spikes. Neural Computation, 18, 245-282.

Janikow, C. and Michalewicz, Z. (1991) An experimental comparison of binary and floating point
representation in genetic algorithms. Proceedings of the Fourth International Conference on Genetic
Algorithms. Kaufman, M. (ed). San Francisco, 31-36.

Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization, Proc. of the IEEE Int. Conf. on Neural
Networks, 4, 1942–1948.

Miller, B.L. and Goldberg, D.E. (1995) Genetic Algorithms, Tournament Selection, and the Effects of
Noise. IlliGAL Report No 95006. University of Illinois at Urbana-Champaign, Urbana, IL.

Moustafa, A. (2007) JAligner: Open source Java implementation of Smith-Waterman.

Rost, B. (1996) PHD: predicting 1D protein structure byprofile based neural networks, Meth. Enzymol,
525-539.

Smith, R.E., Forrest, S. and Perelson, A.S. (1993) Searching for diverse, cooperative populations with
genetic algorithms, Evolutionary Computation, 1, 127-149.

Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subsequence, Journal of
Molecular Biology, 147.

